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Correlation of gas-phase lithium cation basicities (LCB) of 259 diverse compounds extends
the published datasets utilizing multilinear, support vector machine (SVM) and projection
pursuit regression (PPR) modeling. The best multiple linear regression (BMLR) method im-
plemented in CODESSA was used to: (i) build multiparameter linear QSPR models and (ii) se-
lect set of descriptors for further treatment by the SVM and PPR. The external predictivity
and the performance of each of the above methods was estimated and compared to those of
the other techniques. The PPR method produced results superior to SVM, which in turn out-
performed MLR. The physico-chemical interpretation of each of the descriptors provides
new insight into the mechanism of LCB interactions.
Keywords: Quantitative structure-property relationships; Lithium cation basicity; CODESSA;
Multiple linear regression; Support vector machines; Projection pursuit regression.

The present comprehensive study of the relationship of lithium cation ba-
sicity values to chemical structure amplifies previous work1,2 by: (i) extend-
ing the dataset; providing (ii) new models with superior predictive power
and (iii) new insight into the mechanism of LCB interactions.

During the last 60 years, proton affinity scales ranging from weak to very
strong bases3 have been constructed by computational chemistry, including
high-level ab initio calculations4. Recent studies have concentrated on inter-
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actions with metal cations instead of protons5, especially alkali-metal
cations which are relatively easily produced under vacuum6–11.

B(g) + Li+
(g) → B–Li+

(g) (1)

Similarly to H+, the gas-phase lithium cation basicity (LCB) is defined
as the negative Gibbs free energy associated with reaction (1). However,
the coordination properties of Li+ are quite different from those of H+:
a proton adds to a base, forming a polar covalent σ bond with a very exten-
sive charge transfer, while the bonds formed by Li+ are largely due to ion-
dipole (electrostatic) interactions12. As a result, the basicities toward lith-
ium cation are much smaller and cover a narrower range in the energy scale
than gas phase basicities towards the proton.

In addition to the now classical methods for experimental determination
of LCBs such as mass spectrometry13 and ion cyclotron resonance (ICR)14,
more recent methods employing Fourier transform ion cyclotron resonance
(FT-ICR)15–17, equilibrium constant determination high pressure mass spec-
trometry (HPMS)11,18, energy-resolved collision-induced dissociation (CID)19

and photodissociation and radiative association kinetics20,21 have become
widely applicable.

Most current LCB estimations rely on ab initio22,23 or density functional
theory (DFT)12,24–27 calculations. The ab initio Hartree–Fock calculations are
usually performed by using 6-311+G(d,p) or higher basis sets and scaling
factors less than 1. Compared to the Hartree–Fock, MP2, MP3 and configu-
ration interaction (CI) methods, the DFT method at B3LYP level28 in most
cases provide results with higher accuracy while no scaling factors are nec-
essary. Then, the Gibbs free energies and enthalpies at 298 K are calculated
and the ∆∆GLi+ values obtained are converted into absolute LCBs.

Applications of the ab initio and DFT methods for LCB correlation usually
result in excellent correlations with R2 > 0.97 29, but these are somewhat
limited due to the significant computational power required. Thus, the
QSPR methods known for their ability to generate accurate estimations in
relatively short time have gained increased popularity.

The first two QSPR models for the prediction of LCB were proposed al-
most simultaneously: (i) our group1 proposed a six-descriptor linear model
for 205 compounds with R2 = 0.801 and s = 2.963; (ii) Jover et al.2 proposed
QSPR models based on a) MLR-CNN (multiple linear regression – cellular
neural networks) and b) GA-CNN (genetic algorithm – cellular neural net-
works) nonlinear techniques for an extended dataset of 229 compounds
with statistical parameters for the HMCNN (hybrid multiple component
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neural networks) training set R2 = 0.905 and RMSE = 2.251, while the alter-
native (GA-CNN) produced superior results: R2 = 0.954 and RMSE = 1.563.

Despite this work, the lithium cation basicity scales remain much more
limited than the proton affinity scale. Thus, the extension of the LCB scale
could greatly benefit from the existing theoretical methods for property
predictions and estimations.

DATASET

Experimental lithium cation basicity (LCB) values for the 259 molecules
(shown in Table I) were taken from the literature12,16,21,24–27,30. With only
two exceptions (methoxyethanol and 1,2-dimethoxyethane) the dataset of
ref.2 appears to be an extension (including 26 new compounds) of the
dataset of ref.1 The names of the compounds, the literature source used and
their experimental and predicted LCBs are listed in Table I. The LCB ranged
from 17.9 to 54.7 kcal/mol, with a mean value of 35.33 kcal/mol; LCB data
distribution is close to normal (Gaussian), see Fig. 1

COMPUTATIONAL PROCEDURE

The structures of the compounds were preoptimized employing the molec-
ular mechanics force field (MM+) available in the HyperChem 7.5 31. Final
refined molecular geometries were obtained using the semi-empirical meth-
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FIG. 1
Histogram and probability density function of the LCB values



Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 1, pp. 217–241

220 Katritzky, Ren, Slavov, Karelson:

TABLE I
Compounds together with their experimental and predicted LCBs

No. Compounds Ref. Subset Exp.
Predicted

BMLRi SVMj PPRj

1 trifluoromethylacetylene a A 17.9 20.1 19.3 21.8
2 sulfur dioxide a B 18.2 21.2 20.9 18.9
3 carbonyl fluoride a C 18.4 15.6 21.3 16.7
4 hexafluoroacetone a A 19.1 19.6 17.8 18.9
5 bis(trifluoromethyl) disulfide a B 19.2 11.4 19.9 20.1
6 perfluoro-tert-butyl alcohol a C 20.3 24.1 21.4 20.7
7 methanethiol a A 20.3 26.1 20.7 21.3
8 trifluoroacetonitrile a B 21.3 19.1 19.8 19.1
9 ethanethiol a C 21.4 27.0 21.5 21.8

10 trifluoroacetaldehyde a A 21.8 22.4 21.1 22.6
11 bis(perfluoroisopropyl)ketone a B 21.9 24.0 20.4 21.4
12 perfluoropyridine a C 22.3 25.0 22.8 23.3
13 propane-2-thiol a A 22.4 27.6 22.6 22.5
14 propane-1-thiol a B 22.5 28.7 23.9 23.8
15 dimethyl sulfide a C 23.4 27.6 24.3 24.5
16 2-methylpropane-1-thiol a A 23.7 29.7 25.5 25.6
17 chlorobenzene d B 23.7 28.9 28.7 27.1
18 1,1,1,3,3,3-hexafluoropropan-2-ol a C 23.8 26.3 23.8 24.9
19 perfluoro-tert-butylamine a A 23.8 26.5 24.2 23.3
20 2-methylpropane-2-thiol a B 23.8 28.4 23.8 23.4
21 1-butanethiol a C 24.0 29.7 25.6 25.7
22 bromobenzene d A 24.3 29.6 29.7 28.5
23 bis(difluoromethyl) ketone a B 24.6 26.3 24.6 24.9
24 water a C 24.7 28.9 26.3 27.4
25 ethyl methyl sulfide a A 25.0 29.6 26.8 26.5
26 formaldehyde a B 25.4 29.9 28.2 27.5
27 2,2,2-trifluoroethyl trifluoroacetate a C 25.7 27.3 26.9 28.0
28 tetrahydrothiophene a A 25.8 28.6 25.5 24.8
29 hydrogen cyanide a B 25.9 27.1 26.1 25.9
30 tetrahydrothiopyran a C 25.9 29.4 26.8 26.0
31 fluoroacetonitrile a A 26.2 29.1 28.5 28.9
32 1,1,1,3,3,3-hexafluoro-2-methoxypropane a B 26.2 26.4 26.7 27.4
33 malononitrile a C 26.3 33.2 31.7 32.3
34 diethyl sulfide a A 26.4 29.0 26.2 25.4
35 2,2,2-trifluoroethanol a B 26.5 28.1 27.9 28.0
36 benzenethiol d C 26.8 27.9 22.5 23.0
37 trichloroacetonitrile a A 26.8 27.0 25.7 25.6
38 benzene a B 26.9 27.1 26.4 27.4
39 1,1,1-trifluoroacetone a C 27.0 27.3 27.3 27.3
40 trichloroacetaldehyde a A 27.2 30.1 27.7 28.6
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TABLE I
(Continued)

No. Compounds Ref. Subset Exp.
Predicted

BMLRi SVMj PPRj

41 1,1,1,5,5,5-hexafluoroacetylacetone a B 27.3 31.6 29.7 31.9
42 isobutyl methyl sulfide a C 27.4 29.8 30.9 30.7
43 (2,2,2-trifluoroethoxy)ethene a A 27.4 31.9 30.1 30.6
44 dichloroacetonitrile a B 27.7 30.4 28.3 28.7
45 phenol d C 28.1 32.4 30.5 30.8
46 methanol a A 28.5 30.5 28.3 28.5
47 pyrazine a B 28.6 33.9 33.2 33.8
48 methyl chloroformate a C 28.9 28.9 30.7 28.6
49 dipropyl sulfide a A 28.9 29.5 27.2 27.1
50 methyl trifluoroacetate a B 28.9 31.3 29.6 28.9
51 diisopropyl sulfide a C 28.9 27.4 28.6 28.7
52 bis(2,2,2-trifluoroethyl) ether a A 29.2 26.3 27.6 28.0
53 1,2-dihydrocyclobutabenzene d B 29.3 32.3 33.1 31.9
54 cyanogen bromide a C 29.4 24.5 29.5 25.8
55 chloroacetonitrile a A 29.4 31.3 30.2 31.8
56 4-(trifluoromethyl)pyridine a B 29.5 30.6 30.3 29.1
57 dimethyl ether a C 29.5 29.4 30.0 28.9
58 methyl 2,2,2-trifluoroethyl ether a A 29.6 27.1 28.7 28.0
59 toluene d B 29.7 32.6 33.1 32.3
60 pyrimidine a C 29.8 36.1 35.7 35.2
61 S-methyl trifluoroacetothioate a A 29.9 27.5 30.0 27.2
62 anisole a B 30.2 34.3 34.7 32.4
63 ammonia a C 30.2 30.0 28.6 30.4
64 1,4-dioxane a A 30.3 31.3 32.4 32.3
65 2,2,2-trichloroethanol a B 30.4 34.2 33.2 32.8
66 ethanol a C 30.4 32.1 30.3 30.5
67 naphthalene a A 30.5 30.1 30.5 30.2
68 dibutyl sulfide a B 30.6 32.7 31.9 31.9
69 di-tert-butyl sulfide a C 30.6 30.0 31.6 30.8
70 ethyl trifluoroacetate a A 30.6 30.8 29.8 29.2
71 ethylbenzene a B 31.1 35.0 35.3 33.2
72 methylamine a C 31.3 32.8 32.6 34.2
73 1-propanol a A 31.4 33.7 32.4 32.9
74 3-chloropyridine a B 31.6 34.5 34.1 34.9
75 acetaldehyde a C 31.8 32.5 31.5 32.1
76 trimethylamine a A 32.0 32.6 32.9 32.3
77 1,2,3-triazole a B 32.1 37.5 33.3 34.7
78 dimethylamine a C 32.1 32.5 32.5 33.5
79 2-propanol a A 32.3 33.0 31.7 31.9
80 methyl formate a B 32.4 31.5 32.7 31.0
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TABLE I
(Continued)

No. Compounds Ref. Subset Exp.
Predicted

BMLRi SVMj PPRj

81 isobutyl alcohol a C 32.5 34.6 33.9 33.6
82 butylbenzene a A 32.6 38.0 37.2 36.5
83 acetic acid a B 32.7 34.0 32.7 33.7
84 tetrahydrofuran a C 32.7 31.5 32.8 32.1
85 1,2,4-triazole a A 32.7 37.9 34.3 36.0
86 methoxyacetonitrile a B 32.8 34.7 35.5 34.9
87 butan-1-ol a C 32.8 34.7 33.9 33.6
88 propanal a A 32.8 34.0 33.7 34.1
89 isoxazole a B 32.9 30.8 31.4 30.2
90 2-hydroxyethyl hydrogen sulfate a C 33.0 34.9 34.3 35.2
91 2,2-dimethyl-1-propanol a A 33.1 35.4 35.0 34.7
92 2,6-difluoropyridine a B 33.2 31.0 31.7 31.9
93 tert-butyl alcohol a C 33.3 33.7 32.8 32.9
94 diethyl ether a A 33.3 31.8 33.1 33.3
95 butanal a B 33.3 35.5 35.7 35.1
96 sec-butyl alcohol a C 33.3 34.6 33.7 33.5
97 tetrazole a A 33.3 38.9 32.5 35.3
98 thiazole a B 33.4 32.9 32.7 33.0
99 pyrazole a C 33.6 35.7 33.4 34.1

100 phenanthrene a A 33.7 32.0 32.8 33.5
101 pentanal a B 33.8 36.5 37.0 36.3
102 S-methyl thioacetate a C 33.8 32.1 31.8 31.7
103 anthracene a A 33.8 31.9 32.7 33.1
104 ethyl formate a B 33.9 32.8 33.7 33.3
105 trifluoroacetamide a C 33.9 31.3 33.2 33.1
106 acetonitrile a A 34.0 36.4 34.8 36.5
107 dimethyl sulfate a B 34.0 29.8 28.7 29.8
108 pyrene a C 34.2 32.7 33.4 34.3
109 tert-butyl methyl ether a A 34.2 32.9 34.4 34.4
110 1-methylpyrazole a B 34.3 39.0 39.7 37.7
111 butyl formate a C 34.3 36.6 36.8 36.6
112 propyl formate a A 34.3 35.1 35.2 34.9
113 (methylthio)acetonitrile a B 34.3 34.2 34.6 34.4
114 2-methyltetrahydrofuran a C 34.3 32.8 32.7 32.0
115 cyclohexanemethanol a A 34.3 33.3 34.8 34.4
116 hexanal a B 34.4 37.2 38.1 37.1
117 ethyl perfluoropivalate a C 34.5 41.0 39.9 39.5
118 N,N-dimethylcyanoformamide a A 34.5 32.5 33.0 35.1
119 heptanal a B 34.6 37.9 39.0 37.9
120 methoxytrimethylsilane a C 34.6 33.0 36.2 35.9
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TABLE I
(Continued)

No. Compounds Ref. Subset Exp.
Predicted

BMLRi SVMj PPRj

121 coronene e A 34.7 39.2 36.8 38.0
122 azulene a B 34.7 30.8 31.6 30.7
123 phosphoryl chloride a C 34.7 28.1 31.7 31.9
124 dipropyl ether a A 34.8 34.0 35.5 35.8
125 2,5-dimethyltetrahydrofuran a B 35.0 33.7 35.1 35.1
126 pyridine a C 35.0 32.5 32.2 33.1
127 benzeneacetonitrile a A 35.1 36.2 36.4 36.0
128 3-methylpyrazole a B 35.1 38.6 36.9 37.3
129 2-fluoropyridine a C 35.1 31.2 30.5 30.7
130 hexafluoro-diacetamide a A 35.2 34.6 34.3 34.1
131 methyl acetate a B 35.2 32.4 34.4 33.6
132 1,1,1-trifluoro-2,4-pentanedione a C 35.3 35.1 37.3 36.2
133 acetone a A 35.3 32.9 33.3 33.5
134 propionitrile a B 35.3 32.3 32.2 33.5
135 tert-butyl ethyl ether a C 35.4 33.5 35.0 35.5
136 butanenitrile a A 35.4 33.9 34.3 34.4
137 benzonitrile a B 35.5 32.4 31.8 33.2
138 diisopropyl ether a C 35.5 33.0 34.5 34.9
139 2-hydroxyethyl hydrogen sulfite a A 35.6 32.9 34.9 34.5
140 isobutyronitrile a B 35.7 33.2 33.5 34.1
141 4-methylpyrazole a C 35.7 37.9 35.7 36.9
142 benzyl alcohol a A 35.8 37.0 35.8 37.6
143 valeronitrile a B 35.8 34.8 35.5 35.0
144 benzo[3,4]cyclobuta[3]phenylene e C 35.9 33.2 33.7 34.5
145 heptylbenzene a A 35.9 40.4 38.5 38.2
146 methyl 4-nitrophenyl sulfone a B 36.0 44.1 38.4 41.5
147 butan-2-one a C 36.0 34.8 35.7 35.2
148 ethyl acetate a A 36.0 33.8 35.5 34.7
149 methyl methanesulfonate a B 36.3 37.0 37.4 38.1
150 methyl propanoate a C 36.3 33.8 35.5 34.9
151 dimethyl terephthalate b A 36.3 41.8 38.8 41.6
152 O-methyl methanesulfonothioate a B 36.4 32.0 34.2 35.0
153 pivalonitrile a C 36.4 33.9 34.4 34.3
154 dibutyl ether a A 36.5 36.7 36.2 36.1
155 3-methylpyridine a B 36.5 35.4 36.7 37.1
156 1,2-oxathiolane-2,2-dioxide a C 36.7 37.2 37.4 37.7
157 pentan-3-one a A 36.7 35.1 36.2 35.9
158 octanonitrile a B 36.8 36.7 38.1 36.5
159 methyl benzoate a C 37.0 37.3 36.8 37.5
160 1,4-dimethylpyrazole a A 37.0 39.7 40.1 38.3
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TABLE I
(Continued)

No. Compounds Ref. Subset Exp.
Predicted

BMLRi SVMj PPRj

161 dimethyl carbonate a B 37.0 31.8 33.7 32.7
162 1,1-diphenylethane f C 37.1 37.7 37.2 36.4
163 dimethyl sulfone a A 37.1 35.2 38.4 38.3
164 4,4,4-trifluorobutylamine a B 37.1 34.2 36.2 35.1
165 1-cyclopropylethan-1-one a C 37.4 35.4 36.5 36.6
166 formamide a A 37.5 36.4 37.9 37.3
167 2,4-dimethylpentan-3-one a B 37.5 37.2 38.8 37.2
168 dimethyl isophthalate b C 37.6 41.9 39.0 41.9
169 methyl phenyl sulfone a A 37.6 37.5 37.7 38.8
170 nonanonitrile a B 37.6 40.5 41.8 38.4
171 1,5-dimethylpyrazole a C 37.7 40.6 39.7 40.8
172 benzaldehyde a A 37.7 34.3 34.4 34.9
173 adamantane-1-carbonitrile a B 38.1 37.3 38.5 38.2
174 imidazole a C 38.1 36.1 35.2 35.8
175 1-(4-methylphenyl)ethan-1-one a A 38.1 40.7 41.8 43.2
176 1,3,5-trimethylpyrazole a B 38.3 41.1 43.2 39.3
177 dicyclopropylmethanone a C 38.4 35.9 37.1 37.1
178 3,4,5-trimethylpyrazole a A 38.7 38.3 37.2 38.0
179 ethyl pivalate a B 38.9 36.0 37.0 37.1
180 dimethylcyanamide a C 39.0 34.3 33.0 34.4
181 sulfolane a A 39.0 36.9 39.1 39.5
182 1,3,4,5-tetramethylpyrazole a B 39.0 40.0 41.5 38.8
183 circumcoronene e C 39.2 35.0 38.2 38.4
184 1-[4-(trifluoromethyl)phenyl]ethan-1-one h A 39.2 44.5 40.1 41.7
185 1-[3-(trifluoromethyl)phenyl]ethan-1-one h B 39.2 37.9 38.5 38.9
186 1,2-oxathiolane 2-oxide a C 39.2 38.0 38.7 38.9
187 methyl phenyl sulfone a A 39.3 40.6 39.7 40.8
188 angular benzo[3,4]cyclobuta[3]phenylene e B 39.4 33.2 33.8 34.9
189 N-methylformamide a C 39.6 39.2 40.3 40.8
190 N,N-dimethyltrifluoroacetamide a A 39.7 34.7 37.0 36.2
191 acetamide a B 39.9 39.2 40.5 40.3
192 N-methyl dimethylcarbamate a C 39.9 37.3 37.8 39.2
193 1-methyl-4-(methylsulfonyl)-benzene a A 40.2 43.3 39.6 42.1
194 1-methylimidazole a B 40.2 38.2 38.2 37.6
195 N,N-dimethyl-3-pyridinamine a C 40.6 43.7 47.0 44.3
196 diphenyl sulfone a A 40.6 39.8 40.8 42.1
197 1-(3-fluorophenyl)ethan-1-one h B 41.0 39.2 41.4 41.9
198 1-(3-chlorophenyl)ethan-1-one h C 41.1 40.5 41.8 42.9
199 pyridazine a A 41.4 33.7 32.5 33.5
200 N-methylacetamide a B 41.5 39.4 41.0 40.7



Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 1, pp. 217–241

A Comparative QSAR Study 225

TABLE I
(Continued)

No. Compounds Ref. Subset Exp.
Predicted

BMLRi SVMj PPRj

201 isophorone a C 41.5 41.3 42.9 44.0
202 N,N-dimethylformamide a A 41.5 38.3 39.2 39.1
203 glycine c B 41.6 39.6 39.9 39.8
204 dimethyl sulfoxide a C 41.8 32.2 36.5 35.6
205 1,2-dimethylimidazole a A 41.8 39.8 40.6 38.8
206 1,2-diphenylethane f B 42.0 36.4 36.1 36.6
207 N,N-dimethyl-4-pyridinamine a C 42.0 43.8 47.1 44.1
208 tetramethylguanidine a A 42.4 42.5 43.3 42.6
209 1-(4-chlorophenyl)ethan-1-one h B 42.5 42.6 43.7 44.1
210 1-(4-fluorophenyl)ethan-1-one h C 42.5 40.5 41.7 42.8
211 dimethyl phosphate a A 42.5 39.2 41.5 41.9
212 2,4,5-trimethylpyrazole a B 42.6 40.1 41.0 39.3
213 2-methoxyethanol a C 42.7 35.5 36.1 37.2
214 N,N-dimethylacetamide a A 42.8 38.7 40.3 39.8
215 methyl phenyl sulfoxide a B 42.9 37.9 39.9 39.8
216 tetrahydrothiofene 1-oxide a C 43.1 34.0 37.9 37.3
217 acetylacetone a A 43.1 38.5 40.2 39.0
218 alanine c B 43.2 41.2 41.8 42.2
219 1,8-naphthyridine a C 43.4 38.8 39.4 38.3
220 trimethyl phosphate a A 43.7 42.4 44.0 44.3
221 diphenyl sulfoxide a B 43.9 37.0 40.7 40.5
222 dimethyl methylphosphonate a C 44.0 43.4 39.6 40.9
223 1,7-diphenylheptane f A 44.0 43.1 44.1 44.6
224 diisopropyl phosphonate a B 44.1 46.3 45.2 45.0
225 diethyl (chloromethyl)phosphonate a C 44.1 46.5 45.4 45.2
226 1,3-diphenylpropane f A 44.2 38.6 37.2 38.2
227 acetophenone h B 44.2 38.5 39.5 39.7
228 4-(trifluoromethyl)phenyl diphenylphosphinate a C 44.3 52.7 43.5 44.7
229 1-(3-methylphenyl)ethan-1-one h A 44.9 40.8 41.9 43.7
230 diethyl methylphosphonate a B 45.0 45.4 44.9 44.7
231 valine c C 45.0 43.6 44.8 44.8
232 dimethyl phenylphosphinite a A 45.1 49.2 44.4 44.9
233 triethyl phosphate a B 45.1 45.4 44.9 44.9
234 triphenyl phosphate a C 45.2 48.2 44.6 44.7
235 leucine c A 45.2 45.0 46.3 46.0
236 cysteine c B 45.2 40.5 46.5 44.6
237 isoleucine c C 45.3 45.0 46.3 46.2
238 4-fluorophenyl diphenylphosphinate a A 45.6 51.1 45.9 46.8
239 trimethylphosphine oxide a B 45.7 40.7 43.4 45.1
240 3-chloro-4-methoxyacetophenone h C 45.8 44.4 46.1 45.6



od AM1 (Austin Model 1) with no symmetry constraints imposed. All calcu-
lations were carried out applying a gradient norm limit of 0.01 kcal/mol
as a stopping criterion. The optimized geometries were then loaded into
CODESSA package32. Overall, 883 descriptors classified as (i) constitutional,
(ii) topological, (iii) geometrical, (iv) electrostatic and (v) quantum chemi-
cal were calculated. These descriptors encode information about the con-
nections between atoms, shape, branching, symmetry, distribution of
charge, and quantum-chemical properties of the molecule.

Best multilinear regression. The best multilinear regression (BMLR) meth-
od33 implemented in the CODESSA package was used for systematic de-
velopment of multi-linear QSPR equations: preselection of descriptors by
eliminating those which are not available for every structure, have a small
variation or having F-test or t-values less than the predetermined ones.
BMLR implements the strategy described in the supplementary material.

Support vector machine for regression (SVR). SVM algorithm was proposed in
1995 by Vapnik34. The SVM methods are designed around the computation
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TABLE I
(Continued)

No. Compounds Ref. Subset Exp.
Predicted

BMLRi SVMj PPRj

241 4-methylphenylethan-1-one h A 46.3 40.8 42.0 43.8
242 triethylphosphine oxide a B 46.7 44.2 46.1 46.5
243 phenyl diphenylphosphinate a C 46.9 49.1 45.8 46.3
244 dimethyl phthalate b A 47.1 41.1 37.9 40.7
245 2-(pyridin-2-yl)ethanamine g B 47.4 45.2 48.5 47.0
246 hexamethylphosphoramide a C 47.5 52.8 49.3 48.4
247 triphenylphosphine oxide a A 47.5 48.2 46.7 47.1
248 1-[4-(methylthio)phenyl]ethan-1-one h B 47.5 41.7 41.9 42.2
249 proline c C 47.5 40.7 43.1 45.4
250 1-(4-methoxyphenyl)ethanone h A 48.3 43.0 45.0 45.5
251 phenylalanine c B 48.4 47.6 48.0 47.5
252 serine c C 48.6 45.9 48.0 47.7
253 tyrosine c A 49.0 52.2 50.6 52.2
254 threonine c B 49.9 47.2 48.9 48.8
255 methionine c C 50.4 42.7 48.2 47.0
256 aspartic acid c A 51.5 46.5 48.7 47.7
257 tryptophan c B 52.3 54.6 50.2 53.3
258 glutamic acid c C 52.9 48.2 50.1 49.4
259 1-[4-(dimethylamino)phenyl]ethan-1-one h A 54.7 46.5 50.3 48.1

a Ref.24; b ref.17; c ref.21; d ref.26; e ref.27; f ref.25; g ref.12; h ref.30; i according to the general
model; j averaged values from the submodels.



of an optimal separating hyperplane which provides minimum expected
generalisation error in a multidimensional space called “feature space”.
In this m-dimensional space each compound is represented by a point
which may be thought of as vector of m numbers (descriptors). The support
vector machine can actually locate the hyperplane without ever represent-
ing the feature space explicitly, simply by defining a function, called a ker-
nel function.

The main advantages of SVM are: (i) stable, reproducible results inde-
pendent of the optimization algorithm; (ii) the optimum solution (global
minima) is guaranteed; (iii) only a few parameters have to be adjusted: the
regularization parameter (C), the nature and the parameters of the kernel
function.

Basic theory of projection pursuit regression (PPR). For many practical prob-
lems, the data is usually high dimensional. Thus, we should project the
original high-dimensional data into a lower-dimensional space, line or a
plane, etc., to try to find the intrinsic structure for visual inspection. Given
a dataset (X1, ..., Xn), X ∈ IRk results in a k-dimensional matrix (k × n),
where k is the number of observed variables and n is the number of units.
The matrix Z with a dimension (m × n) is constructed by multiplying the
m-dimensional orthonormal matrix A (m × k) to X (k × n) and represents
the coordinates of the projection data onto the m-dimensional (m < k)
space spanned by rows of A. As there are an infinite number of projections
from a higher dimension to a lower dimension, it is important to have a
technique to pursue a finite sequence of projections that can reveal the
most interesting structures of the data. Projection pursuit (PP) is powerful
tool that combines ideas of both projection and pursuit35.

The nonlinear nature of the SVM and PPR methods provides higher flexi-
bility than BMLR for describing complex phenomena difficult to treat by
the standard linear Hansch approach. Both SVM and PPR algorithms were
written using the R-programming language as implemented in the R statis-
tical package36.

QSAR PROCEDURE

In this work a modified QSPR approach, aiming to combine the advantages
of the two modeling procedures most frequently used was applied, i.e.,
(i) using all available data points to build the model and to apply as a sole
validation the standard internal crossvalidation procedure or (ii) to use
only a part of the available data for building the model, keeping the re-
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maining data points for external validation. Our recommended procedure
to build a reliable QSPR model is as follows:

1. All data points of the full dataset were ordered in a descending order of
their LCB values.

2. The initial set was separated into three subsets (conditionally denoted
as A, B and C) by selection of every third point from the original dataset in
order to obtain a similar distribution of the investigated property values for
each subset, A, B, C.

3. Three new datasets were constructed using the three binary sums com-
binations: A+B, A+C and B+C.

4. The standard QSAR modeling procedure including best multiple linear
regression method (BMLR) was applied to those three datasets obtained in
step 3.

5. The complementary parts to each of these three datasets (C, B and A,
respectively) were used as external validation datasets by considering their
consistency.

6. All the descriptors that appeared in the obtained models of step 4 were
tested to obtain a general model including the full dataset of compounds.

7. The general model was again validated using classical internal
crossvalidation and scrambling procedures.

For evaluation of the model performance we utilized: (i) R2, to measure
the model’s fit performance and (ii) RMSE, as defined in Eq. (2), to evaluate
the prediction performance:

RMSE =
( )y y

n

ke kp
i

n

−
=
∑ 2

1 (2)

where k represents the k-th molecule, yke is the experimental property, ykp
is the predicted property, and n is the number of compounds in the ana-
lyzed set.

Using the models developed, the predicted LCB values of compounds in
the training set were compared with the observed values. Compounds with
deviations larger than 3 times that of the standard deviation were judged to
be statistical outliers and removed from the training set. The model fitting
process was then repeated using the remaining data. In addition, due to the
nonlinear and/or nonparametric nature of the modeling methods used in
this study, mathematical expressions of the resulting nonlinear models are
not available.
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RESULTS AND DISCUSSION

An estimation of the predictive power of the previous models. We esti-
mated the predictive power of the models previously reported1,2 using:
(i) the six parameter multilinear model published in Table 2 of ref.1 which
gave R2 = 0.658 and RMSE = 4.502 when applied to the current dataset
and (ii) the seven parameter multilinear model published in Table 2 of ref.2

which performed slightly better (R2 = 0.728 and RMSE = 4.579). However,
these results are of moderate quality and do not describe satisfactory LCBs
of the current dataset which has considerably increased diversity.

BML results. For successful QSPR modeling, the data investigated should
posses a normal distribution; furthermore the statistical parameters (mean
standard deviation and skewness) for the general population and for the
samples should have similar magnitudes. As can be seen from the histo-
grams shown in Fig. 1 for the general population and Fig. 2 for the samples,
the data does indeed possess a normal distribution in terms of their mean
standard deviation and skewness.
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FIG. 2
Data distribution for the A, B and C subsets



Best multilinear regression models including up to seven descriptors were
generated. To avoid “over-parametrization” of the models, ∆R2 = R2

n –
R2

n–1 ≤ 0.02 was chosen as a stopping criterion37. Thus, six- and seven-
parameter submodels (Table II) were chosen as optimal. In Tables II and III,
X denotes the regression coefficients, ∆X their errors, t-test is the Student
criterion, F represents the Fisher criterion, R2

cv denotes the square of the
leave-one-out cross-validated correlation coefficient and s2 the standard de-
viation of the regression.

The descriptors appearing in Table II for the submodels of datasets A+B,
A+C and B+C are quite similar, with small differences due to the procedure
applied for the descriptor selection in the BLMR method (see the inter-
correlation matrix shown in Table IV). Depending on the dataset, different
(but physically similar and highly intercorrelated) descriptors may appear
in the different models. Namely, only one of a pair or a set of highly inter-
correlated descriptors is used in the further model development.

In the next stage of the modeling process, we built a general QSPR model
based only on the descriptors proven to be effective for the submodels (see
Table II). This subset of 14 unique descriptors was further treated by the
BLMR procedure and a general model for all 259 compounds was derived.
The statistical parameters of the general six parameter model obtained are
shown in Table III and Fig. 3.

Using the model of Table III, the LCBs for all compounds were predicted
and the results are shown in Table I (column 6).

To examine the sensitivity of the proposed QSAR model to chance corre-
lations a scrambling procedure was applied, i.e., the model was fitted to
randomly reordered activity values and then compared with the one ob-
tained for the actual activities38. Ten randomizations (Table V), resulting in
average R2 = 0.025 were performed. The substantial difference between the
R2 of the general model of Table III and the averaged R2 from the scram-
bling procedure proves the stability of the model.

Despite the satisfactory quality of the general MLR model presented
in Table III, none of the descriptors of Table III showed individual strong
linear relationships with the LCB. In order to investigate possible non-
linearities and to avoid the limitations imposed by the multilinear method
we shifted the focus of our research to the application of SVM and PPR for
QSPR modeling. These descriptors were used as inputs to develop nonlinear
models by SVM and PPR. Again, datasets constructed by the three binary
sums combinations: A+B, A+C and B+C were used as training subsets and C,
B and A, respectively were used as external validation datasets by consider-
ing their consistency. By averaging the predicted results, the final predicted
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TABLE II
Best six- and seven-parameters BMLR submodels

ID X ∆X t-Test Descriptor

R2
trAB = 0.857; R2

cv = 0.842; F = 140.87; s2 = 8.329; R2
testC = 0.669

0 21.236 0.929 22.870 Intercept

1 1.993 0.140 14.262 Structural Information content (order 0)

2 0.031 0.002 14.660 Tot molecular 1-center E-N attraction/No. of atoms

3 –10.195 0.969 –10.522 Min net atomic charge

4 –4.875 0.587 –8.302 Number of S atoms

5 3.838 0.504 7.614 HACA-2 [Zefirov’s PC]

6 125.530 20.036 6.265 Max SIGMA-PI bond order

7 0.020 0.005 4.484 (1/2)X BETA polarizability (DIP)

R2
trAC = 0.805; R2

cv = 0.782; F = 97.39; s2 = 11.276; R2
testB = 0.699

0 12.217 2.838 4.305 Intercept

1 1.980 0.163 12.169 Structural Information content (order 0)

2 –20.001 2.202 –9.084 Relative number of F atoms

3 4.656 0.575 8.101 HACA-2 [Zefirov’s PC]

4 –10.189 1.340 –7.606 Min net atomic charge

5 –59.481 9.006 –6.605 Relative number of S atoms

6 –6.136 2.070 –2.963 RPCG Relative positive charge (QMPOS/QTPLUS)
[Zefirov’s PC]

7 18.848 4.691 4.018 Molecular volume/XYZ Box

R2
trBC = 0.783; R2

cv = 0.756; F = 99.12; s2 = 12.085; R2
testA = 0.773

0 23.470 1.142 20.548 Intercept

1 1.088 0.103 10.532 Bonding Information content (order 1)

2 –12.620 1.222 –10.330 Min net atomic charge

3 –1.246 0.152 –8.200 Number of F atoms

4 2.014 0.339 5.942 Count of H-acceptor sites [Zefirov’s PC]

5 –4.122 0.703 –5.864 Number of S atoms

6 –10.070 1.955 –5.151 RPCG Relative positive charge (QMPOS/QTPLUS)
[Zefirov’s PC]



results for each compound were calculated and used to generate the regres-
sion plots between the predicted and experimental LCB values for both
SVM and PPR models.

SVM modeling results. The quality of SVM depends on a good choice of
the following parameters: kernel type K and its corresponding parameters γ,
capacity parameter C, and ε-insensitive loss function. The most important
parameter is the kernel type K because it, together with its corresponding
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TABLE III
Best six-parameter linear QSPR model

ID X ∆X t-Test Descriptor

0 23.68 0.935 25.34 Intercept

1 –13.05 1.749 –13.40 Min net atomic charge

2 1.011 0.9734 12.71 Bonding Information content (order 1)

3 –16.12 0.08012 –9.217 Relative number of F atoms

4 2.333 0.2631 8.861 Count of H-acceptor sites [Zefirov’s PC]

5 –5.013 0.5864 –8.552 Number of S atoms

6 –9.799 1.772 –5.531 RPCG Relative positive charge (QMPOS/QTPLUS)
[Zefirov’s PC]

N = 259; R2 = 0.786; R2
cv = 0.769; RMSE = 3.424, F = 153.8; s2 = 12.05

FIG. 3
Predicted versus experimental LCBs by general MLR model
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parameters γ, defines the distribution of the training set examples in the
high-dimensional feature space (mapping space) plus the linear model con-
structed in this space and therefore, controls the generalization ability of
SVM. Factor γ greatly affects the number of support vectors (SVs) used to
construct the regression function: too many SVs can produce overfitting
and make the training time longer. Gaussian radial basis function (RBF) was
preferred in this study because of its effectiveness and speed in the training
process. C is the regularization, which controls the trade-off between maxi-
mizing the margin and minimizing the training error: a too small C leads to
insufficient fitting on the training data while a too large C results in
overfitting on the training data. Factor ε depends on the quality of the
noise present in the data, which is usually unknown. The value of ε can
also affect the number of SVs: the larger ε, the fewer SVs are selected but
with a risk to distort the data.

As the three parameters (γ, ε and C) influence each other, a systematic
grid search (GS) method was utilized to determine the best combination.
The optimal model setting parameters are included in Table VI along with
the statistical parameters for the training, test and the whole dataset, re-
spectively. As expected, the results for the whole dataset and those based
on the training and test subsets are very close to each other, thus demon-
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TABLE V
Scrambling procedure statistical results

# R2 s F

1 0.014 55.43 0.577

2 0.029 54.57 1.244

3 0.007 55.77 0.309

4 0.028 54.60 1.218

5 0.020 55.09 0.835

6 0.030 54.51 1.297

7 0.016 55.28 0.684

8 0.009 55.67 0.387

9 0.062 52.71 2.779

10 0.030 54.49 1.308

Average 0.025 54.80 1.064
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strating the consistence of the QSPR modeling procedure applied. By aver-
aging the predicted from the ABC scheme results, we obtained the final
LCB values shown in column 7 of Table I. Compared to the general linear
model the SVM results showed significant improvement (R2 = 0.889 and
RMSE = 2.473). A plot of the predicted versus experimental LCB values is
shown on Fig. 4.

PPR modeling results. Three parameters “nterms”, “optlevel” and “span”33

had to be determined. The parameter “nterms” controls the number of vari-
ables to be entered in the model, “optlevel” means the levels of optimiza-
tion which differ in how thoroughly the models are refitted during this
process, and “span” defines the fraction of the observations in the span of
the running lines smoother. The algorithm proposed by Friedman was used
where values of gi are found by smoothing operation that entails a back-
fitting35.

The optimal model setting parameters and the corresponding statis-
tical parameters for the training, test and the whole datasets are shown
in Table VI. The averaged predicted LCB values are shown in column 8 of
Table I. For the whole dataset, the calculated R2 and RMSE were 0.896
and 2.384, respectively. A graphical presentation of the relationship be-
tween the experimental and the average predicted LCBs by the PPR model
is shown on Fig. 5.
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FIG. 4
Plot of the predicted versus experimental LCBs for SVM



Closer examination of the MLR, SVM and PPR residuals reveals that, gen-
erally, the datapoints from the nonlinear models have smaller deviations
from the regression line than the linear models. The linear predictions for
several compounds (IDs 5 (trifluoromethyl disulfide), 6 (perfluoro-tert-butyl
alcohol), 7 (methanethiol), 9 (ethanethiol), 13 (2-propanethiol) and 228
(4-(trifluoromethyl)phenyl diphenylphosphinate)), resulted in deviations
larger than 5 kcal/mol while the nonlinear models produced deviations less
than 1 kcal/mol. However, for some compounds, the linear model gener-
ated much better results than the nonlinear, i.e., compounds with IDs 37
(trichloroacetonitrile), 201 (isophorone) and 209 (dimethyl phosphite).
In addition, for the following compounds, the deviations were larger than
5 kcal/mol by all models: IDs 47 (pyrazine), 60 (pyrimidine), 117 (N,N-di-
methylcyanoformamide), 204 (dimethyl sulfoxide), 213 (2-methoxy-
ethanol), 216 (tetrahydrothiophene 1-oxide), 226 (1,3-diphenylpropane)
and 248 (proline).

When comparing the performance of all QSPR models developed in terms
of their statistical parameters and predictive power, it appears that the re-
sults obtained by the nonlinear approaches compare favorably with those
obtained by the linear modeling, possibly indicating the nonlinearity ex-
hibited in the given dataset. However, the application of both, PPR and
SVM modeling procedures resulted in similar statistical parameters, demon-
strating the extent of their equivalency.
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FIG. 5
Plot of the predicted versus experimental LCBs for PPR



As can be seen from Table VI for the whole dataset the nonlinear meth-
ods produced very similar results, which outperform significantly those ob-
tained by the general MLR approach in the following order: PPR > SVM >
MLR.

The above results show that the SVM and PPR approaches, although they
seem rather different in their concepts, provide quite similar statistical pa-
rameters, thus showing comparable performance. Therefore, the choice of
SVM or PPR as modeling techniques in treating LCB becomes a personal
preference of the researcher.

Comparison of the performance of the MLR, SVM, PPR, MLR-CNN and
GA-CNN methods. The performance of the now utilized SVM and PPR meth-
ods was compared directly to the performance of the models in refs1,2 using
the corresponding descriptor and datasets. The results are summarized in
Table VII. As can be seen the performance of the models decreases in the
following order: GA-CNN > PPR > SVM > MLR-CNN > MLR. However, it was
not a surprise that the GA-CNN produced better results than any of the
other nonlinear techniques – its nonlinear feature (descriptor) selection
mechanism is superior to all linear future selection procedures employed by
the other methods. Again, the SVM and PPR approaches generated compa-
rable results, with PPR being slightly better in terms of R2 and RMSE. As a
linear method MLR was found inferior to the other techniques, producing
results characterized by significantly lower statistical parameters.

Interpretation of the descriptors in the model. The QSPR model developed
should provide an accurate prediction for the studied property but also
helps to understand the underlying physical phenomenon and identifica-
tion of the key physical variables. By interpreting the descriptors in the
MLR model, it is possible to gain some insight into structural features that
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TABLE VII
A comparison of the statistical parameters for the MLR, SVM, PPR, MLR-CNN and GA-CNN
models

Statistical
parameters

Ref.1, N = 205 Ref.2, N = 229

MLR SVM PPR MLR MLR-CNN GA-CNN SVM PPR

R2 0.751 0.876 0.881 0.793 0.899 0.939 0.900 0.902

RMSE 3.358 2.343 2.302 3.296 2.300 1.792 2.279 2.264



affect the lithium cation basicities. Among the six descriptors, two are con-
stitutional (RNF, relative number of fluorine atoms, NS, number of sulfur at-
oms), one is topological (1BIC, first order of bonding information content),
two are electrostatic (CHA, count of H-acceptor sites, RPCG, relative positive
charge (QMPOS/QTPLUS) [Zefirov’s PC]) and the remaining one is of quan-
tum chemical origin (Qmin, minimum net atomic charge). These descriptors
encode different information affecting lithium cation basicity.

As the descriptors are not normalized, the value of the coefficients can-
not be treated as an indicator of the importance of the descriptor in an
equation or a model. Instead, the t-test values for each of the descriptors
have been used for this purpose. Descriptors with larger absolute t-test val-
ues are considered statistically more significant for the description of the
studied property (LCB).

The most significant descriptor, Qmin, contributes to the intensity of the
electrostatic, in particular the Coulombic, interactions. Logically, it is the
most important descriptor as Li+ forms highly ionic bonds with bases. This
descriptor could be also related to the hydrogen-bonding (HB) formation
phenomena, because a high positive value on the hydrogen atoms implies
good HB donor propensity, whereas a high negative value on heteroatoms
(N, O, F, S and P) implies good acceptor ability. In our previous treatment1,
this descriptor was also selected as the most significant one. The second
most important descriptor 1BIC is defined on the basis of the Shannon in-
formation theory. It reflects the branching of the molecule and its “infor-
mational richness”. The “informational richness” describes how many
different types of atoms build the molecule and how diverse the branching
of these atoms is at zero to second valence level. Thus, it may describe the
difference of the steric properties of the molecules and undoubtedly affects
the formation of Li+-base bond. Following are two constitutional descrip-
tors, RNF, which is defined as the ratio of the number of fluorine atoms
to the total number of atoms in the base, and NS, number of sulfur atoms
in the base. Both descriptors are related to the basic characteristics of
the substrates, since they refer to the number of basic heteroatoms. Their
importance in the models can be rationalized as a measure of the local
polarizability, as the polarizability of base should influence significantly the
strength of the Li+-base bond. As in our previous work1 and that reported
by Jover et al.2, both descriptors are characterized by negative regression co-
efficients. CHA and RPCG belong to charged partial surface area (CPSA)
descriptors invented by Jurs et al.39. As a hydrogen-bond-acceptor
descriptor, CHA reflects hydrogen bond basicity. Acceptor groups include
any functional group possessing sufficient electron density to participate in
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a hydrogen bond. RPCG is the charge on the most positive atom divided by
the total charge summed over all positive atoms and was developed and
used to account for the effects of polar intermolecular interactions40. It also
encodes indirect information on the size of the molecule via the sum of the
partial positive charges. The above two descriptors show the importance of
the electrostatic interactions between the molecules and suggest that they
are polar in nature. Combined together, these factors reflect the electro-
static nature of the Li+-base interaction. They also affect the Li+-base bond
in a complex way and this relationship can be correlated more accurately
in a nonlinear manner using nonlinear surface methodology such as SVM
and PPR.

CONCLUSIONS

QSPR models were developed for 259 highly diverse compounds to predict
their lithium cation basicity (LCB) and study the relationships between LCB
and structural characteristic features, which were represented by molecular
descriptors calculated by CODESSA software. Seven descriptors selected by
the best multilinear regression (BMLR) method implemented in CODESSA
were used as input vectors of two nonlinear modeling methods, i.e., sup-
port vector machine (SVM) and projection pursuit regression (PPR). A com-
parison of the results by these models demonstrated the superiority of
nonlinear methods in predicting LCB. In addition, the analysis of the six
descriptors indicates that the LCB of the studied compounds depends
mainly on electrostatic features.
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